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1 Introduction

Since Hamilton’s (1989) Markov-switching model, time series models with nonlinearities have

become increasingly popular. These models allow econometricians to characterize differences

in economic dynamics across states, whether they be expansions and recessions or high and low

uncertainty regimes. In addition to the standard Markov-switching model, other models can

characterize differences in regimes. Threshold autoregressions and smooth transition autore-

gressions [henceforth STARs; see Granger and Teräsvirta, 1993] also have regime-switching

dynamics, along with the added benefit that the state of the world can be determined by

variables in the VAR. In particular, STAR models (which can nest threshold autoregressions)

have recently been used for a number of applications: a time-varying natural rate of unemploy-

ment [Ball and Mankiw, 2002 and others]; fiscal policy [Auerbach and Gorodnichenko, 2012;

Ramey and Zubairy, 2018 (henceforth RZ); etc]; and financial stress [Galvão and Owyang,

2018], among others.

In these applications, the threshold at which the model dynamics switch is constant.1 For

long samples (as in Ramey and Zubairy, 2018) or for particular types of variables (such as

relative financial stress), one might want the threshold level of the regime-driving variable

to vary over time. In this paper, we propose an extension of the STAR model that allows

for time-variation of the latent threshold. In our model, the regime-driving variable is in the

VAR, allowing shocks to any variable to affect future regime dynamics. We assume that the

time-varying latent threshold follows an AR independent of the other variables in the VAR.

Because the type of time-varying threshold we consider makes direct maximum likelihood

estimation intractable, we estimate the model in a Bayesian environment. Lopes and Salazar

(2006) estimate a STAR model using a Metropolis-Hastings (MH) step to estimate the hyper-

parameters of the transition function. We take a similar approach but split the estimation of

the transition hyperparameters. This becomes necessary both because of the time-variation in

the threshold and because the threshold appears as the latent attractor in the error-correction
1Multiple-regime models with multiple thresholds exist in the literature, but the thresholds themselves are

constant across time. Only special cases of a time-varying threshold have appeared in the literature so far.
Dueker et al. (2010) present a model in which the threshold level varies as a function of another observable
variable.
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term. In addition, because of the nonlinearity in the transition function, we use the unscented

Kalman filter– a nonlinear version of the classic Kalman filter– to obtain the hyperparameters

of a normal proposal.

We present two applications of the time-varying threshold STAR model: (i) a Phillips-

curve-type application where the threshold is analogous to the natural rate of unemployment

and (ii) a fiscal policy application where government spending multiplier varies across states

of the economy.

In our first application, our time-varying threshold tracks some of the movements but

is smoother than observed unemployment data and varies more over time than the CBO

natural rate. For the most part, the qualitative responses to shocks are the same across the

threshold. However, the responses are quantitatively larger in the low unemployment regime.

In our second application, we find that fiscal policy shocks seem to produce different effects

depending on the prevailing economic conditions at the time of the shock. Consistent with

Auerbach and Gorodnichenko (2012), our government spending multipliers are much larger

for shocks occurring in economic downturns than those occurring during expansions, where

the latter take on values less than 1.

The rest of the paper develops as follows: Section 2 presents the STAR model with the

time-varying threshold. Section 3 outlines the sampler used for the MCMC estimation. In

particular, we provide details of the MH step using the unscented Kalman filter proposal

for the time-varying threshold. Sections 4 and 5 present the empirical results for the two

applications. Section 6 concludes.

2 The Time-Varying Threshold STAR Model

The STAR model is a regime switching model in which the state of the economy is a convex

combination of two latent regimes. Let yt be an (n× 1) vector of variables of interest. Define

a state-dependent p-lag process, yit, as

2



yit = αi +

P∑
p=1

θipyt−p + Γi (zt−1 − z∗) + εit, (1)

where αi is a vector of state-dependent intercepts, θip are matrices of state-dependent VAR

coeffi cients, Γi is a matrix of state-dependent error correction coeffi cients, and εit ∼ N (0n,Ωi)

for i = 0, 1.2 Then, the STAR(p), p = max {pi}, model can be thought of as a combination

of two error correction models:

yt = [1− π (zt−1)] y0t + π (zt−1) y1t, (2)

where zt−1 is the threshold variable and π (zt−1) is the transition function.

The threshold variable and the transition function determine the weights of each autore-

gression on the path of yt in terms of the two latent regimes defined by π (zt−1) = 0 and

π (zt−1) = 1. The path of the economy is determined by π (zt−1), which is bounded by

zero and one and a function of past values of zt−1. When π (zt−1) = 0, the steady-state yt is

α0

[
1−

∑p0
p=1 θ0p

]−1
; conversely, when π (zt−1) = 1, the steady-state yt is α1

[
1−

∑p1
p=1 θ1p

]−1
.

In principle, the threshold variable could consist of any data series (or combination of data

series) inside or outside the model. The transition function can take a number of forms and

depends on the threshold variable, zt−1. We assume a first-order logistic transition function3:

π (zt−1) = [1− exp (−γ (zt−1 − z∗))]−1, (3)

where γ ≥ 0 is the speed of transition, z∗ is a (fixed) threshold. To normalize the regimes, we

impose γ > 0.

In (3), the regime process is determined by the sign and magnitude of the deviation of zt−1

from the threshold z∗. If zt is less than z∗, the transition function, π (zt−1), moves further

toward the first regime (in this case, normalized to π (zt−1) = 0). The coeffi cient γ determines

2See Chan and Tong (1986) and Granger and Teräsvirta (1993) for the baseline model. Rothman, van Dijk,
and Franses (2001) extended the model to include error correction terms.

3We refer the reader to van Dijk, Teräsvirta, and Franses (2002) for a review of alternative representations
for the transition function. The estimation algorithm outlined below generalizes to any number of alternative
transition functions.
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the speed of adjustment: as |γ| → ∞, the transition becomes sharper. At γ = 0, the model

has only one regime, leaving the model parameters unidentified.

We are interested in the case in which the threshold parameter, z∗, varies over time. This

might occur, for example, in a model of unemployment, where the natural rate is time varying.

We can rewrite (3) to account for time-variation:

π
(
zt−1; z∗t−1

)
= [1− exp

(
−γ
(
zt−1 − z∗t−1

))
]−1. (4)

In addition, we need to specify a process for the evolution of the time-varying threshold.

Suppose that the time-varying threshold is an autoregressive process:

z∗t = λ0 +
m∑
j=1

λjz
∗
t−j + ut, (5)

where ut is normalized to have a small, fixed variance.4 This assumption implies that– while

the threshold varies over time– the movements are gradual and the process displays a strong

sense of inertia. The threshold innovation may be correlated with the shocks to the observable

data,

Cov(εt, ut) = ρ,

where ρ is a vector of parameters that governs this cross-correlation. For simplicity, we

abstract from potential regime-dependence in the error terms so that εt ∼ N (0,Ω) and

vt = [εt, ut]
′, where

vt ∼ N

0,

 Ω ρ

ρ σ2


 .

In practice, we will normalize the threshold innovation, σ2 = 0.01, for identification.

4The threshold is not restricted to an AR process or could be a function of exogenous shifters as in Dueker
et al. (2010).
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3 Estimation

Because the time-varying latent threshold enters the regime weights, π (zt−1) and 1−π (zt−1),

the model may be diffi cult to estimate by maximum likelihood. It is also not possible to

derive exact conditional distributions for Gibbs sampling. Instead, an MH algorithm [Chib

and Greenberg, 1995] is needed for Bayesian estimation of this model. The MH algorithm

generates a draw from the target distribution by first drawing a candidate from a proposal

density and then accepting or rejecting the candidate based on a probability determined, in

part, by the model likelihood.

The algorithm partitions the set of model parameters into four blocks, including one block

that draws the time-varying threshold. The parameter groupings for Markov Chain Monte

Carlo estimation of the model are: (1) Ψ = [α,θ,Γ], the coeffi cients in the observation

equation; (2) λ, the coeffi cients in the latent variable equation; (3) Σ = [Ω, ρ], the elements in

the variance-covariance matrix for joint system; (4) γ, the coeffi cient in the transition function;

and (5) {z∗t }Tt=1, the set of latent time-varying thresholds. We can combine the estimation of

the first and second blocks. Posteriors are constructed from 5,000 iterations after discarding

the first 5,000 to achieve convergence.

The priors for each of the parameter blocks, their prior distributions, and their prior

hyperparameters are given in Table 1, where κ = n (4 + p0 + p1)+m+1. The VAR coeffi cients,

the coeffi cient on the lag in the latent variable equation, the covariance between the VAR

parameters, and the initial value of the threshold have normal priors. The covariance matrix

for the VAR has an inverse Wishart prior. The rate of transition parameter, γ, has a gamma

prior.

Most of the draws are conjugate with details in Section A in the Appendix. The time-

varying thresholds, {z∗t }Tt=1, are drawn from an MH-in-Gibbs step. To speed the convergence of

the algorithm, we want a tractable proposal density close to the target distribution. Because

the system is nonlinear, the standard linear Kalman filter is not appropriate. Instead, we

obtain the MH proposal densities from the unscented Kalman filter (UKF).5 The UKF is

5See Julier and Uhlmann (1997) and Wan and van der Merwe (2001).
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an alternative to the extended Kalman filter that tracks the state variable by computing its

distribution across a set of deterministic points called sigma points.

3.1 The Unscented Kalman Filter

We can rewrite the model as the state equation in a state-space representation:

xt = g(xt−1) + εt,

where the nonlinear function g(.) contains, among others, the transition function. Given this

state-space representation, inferred values for the state variable xt– which here includes the

data of interest, yt; the driving data, zt; and the latent threshold z∗t – can be obtained

from the unscented Kalman filter (UKF).6 The UKF is a nonlinear filter that serves as an

alternative to the extended Kalman filter that uses first-order Taylor-series approximations

to any nonlinear functions in the measurement and transition equations. Instead, the UKF

tracks the state variable by computing its distribution across a set of deterministic points

called sigma points.7

The unscented transformation applies the nonlinear function g (.) on each of the sigma

points. The corresponding prediction or update in the Kalman filter is taken as the weighted

sum of the transformed sigma points. Let

χp =


x , for p = 0

x +
(√

(L+ ζ)P
)
p

, for p = 1, ..., L

x−
(√

(L+ ζ)P
)
p−L

, for p = L+ 1, ..., 2L

define the sigma points for any stage of the filter, where ζ = a2 (L+ κ) − L. Here, a and

κ are user-chosen parameters that govern the spread and scale of the cloud of sigma points,

respectively, and
(√

X
)
i
is the ith column of the lower triangular Cholesky factorization of

the square matrix X. The matrix P is the uncertainty surrounding the state vector x. Given

6 In our case, zt is an element of the data in yt.
7See Julier and Uhlmann (1997) and Wan and van der Merwe (2001).
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the set of sigma points, we propagate {χp} through the function g (.) to recover a prediction

for each of the sigma points:

χ̃p = g (χp) , for p = 0, ..., 2L.

The predicted states and covariances can then be extrapolated from a weighted sum of

the propagated sigma points:

x̂t|t−1 =

2L∑
p=0

wpsχ
p
t|t−1

and

Pt|t−1 =
2L∑
p=0

wpc

[
χpt|t−1 − x̂t|t−1

] [
χpt|t−1 − x̂t|t−1

]′
,

where w0
s = ζ (L+ ζ)−1, w0

c = ζ (L+ ζ)−1 +
(
1− α2 + β

)
, and wps = wpc = 1

2 (L+ ζ)−1 for all

other p. We form the updated state similar to the standard Kalman filter

x̂t|t = x̂t|t−1 +Kt (yt − ŷt) ,

where Kt is the Kalman gain defined by

Kt = PyzP
−1
yy .

Here, Pyz defines the cross-covariance

Pyz =
2L∑
p=0

wpc

[
χpt|t−1 − x̂t|t−1

] [
γpt|t − ŷt

]′
and Pyy is the predicted covariance

Pyy =
2L∑
p=0

wpc

[
γpt|t − ŷt

] [
γpt|t − ŷt

]′
.
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The updated covariance is defined by

Pt|t = Pt|t−1 −KtPyyK
′
t.

3.2 Unscented Smoothing

Multi-move sampling of the latent attractor, {z∗}Tt=1, requires backwards sampling from one-

period smoothed inferences of the state vector. A typical smoothed Kalman filter uses a

forward filter and a backward smoother. Because the filter is linear, it is always possible to

employ a backward smoother for the Kalman filter. The unscented transformation, however,

is not always invertible, making a backward-looking smoother impossible to implement in

all cases. The Rauch-Tung-Striebel (RTS) filter is an alternative, forward smoother for the

Kalman filter. Särkkä (2008) constructed a smoother using principles similar to RTS. The

unscented RTS smoother augments the unscented Kalman filter with a step that recomputes

the state estimate:

x̂st = x̂t +Dt

[
x̂st+1 − x̂t+1|t

]
with covariance matrix

P st = Pt +Dt

[
P st+1 − Pt+1|t

]
D′t.

The smoother gain, Dt, is defined by

Dt = Pzt,zt+1P
−1
t+1|t,

where

Pzt,zt+1 =
2L∑
p=0

wpc

[
χpt+1|t − x̂t+1|t

] [
χpt|t − x̂t|t

]′
and
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χt|t = χt|t−1 +Kt(yt − ŷt|t−1).

The series of latent thresholds, {z∗t }
T
t=1, are elements of the state vector, x̂st . The UKF

yields estimates of the state vector for the state space representation from Section 3.1, x̂t, and

its uncertainty, P st , for each time period. In linear models, one would normally obtain the

smoothed posterior density and draw the values of the state vector recursively. For nonlinear

models, there are no optimal filters. Rather than drawing directly from the Kalman posterior,

the output of the UKF can be thought of as a proposal density for an MH algorithm used to

draw the latent thresholds. Given x̂st and P
s
t , the candidate ẑ

∗
t can be drawn as a subvector

of xt:

ẑ∗t ∼ N (x̂st , P
s
t ) ,

where the subscripted z indicates the truncation of the state vector. The candidate is accepted

with probability az = min {Az, 1}, where

Az =

∏
t φ (yt|π (zt−1|γ,ẑ∗t ) ,Ψ,Σ)∏

t φ
(
yt|π

(
zt−1|γ,z∗[i]t

)
,Ψ,Σ

) ,
and the superscript [i] represents the past accepted value.

4 Application 1: The Natural Rate of Unemployment

The Phillips curve and Okun’s Law are typically estimated using the value of the unemploy-

ment rate relative to its natural rate, an unobserved quantity. STAR models have the appeal-

ing feature that the threshold unemployment rate can determine the evolution of inflation

[e.g., Deschamps, 2008; Skalin and Teräsvirta, 2002].8 While the constant STAR threshold

8The literature also uses unobserved components decompositions that interpret the permanent component
of unemployment as the natural rate [e.g., Basistha and Nelson, 2007; Clark, 1989; Doménech and Gómez,
2006; Jaeger and Parkinson, 1994; Sinclair, 2009] and Markov-switching models to characterize the shifting
relationship between inflation and unemployment [e.g., Chauvet, Juhn, and Potter, 2002; Phelps and Zoega,
1998].
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leaves it uninterpretable, our time-varying threshold might serve as a meaningful estimate of

the natural rate.9 More precisely, the time-varying threshold is the “tipping level” rate of

unemployment at which the mean and/or dynamics of the unemployment rate shift.

4.1 Data

Estimation of the model requires a set of observables, yt, and the threshold variable, zt−1, that

determines the regime process. For this application, the set of observables includes the change

in the monthly unemployment rate, inflation, and an interest rates. The unemployment rate

is taken from the BLS’s payroll employment survey. Inflation is the monthly difference in the

log of the CPI, excluding food and energy. The interest rate is the 3-month T-Bill. The full

sample of data begins in January 1968 and ends in December 2019.

To make the model self-exciting, the threshold variable, zt−1, is chosen to be one of the

set of observables– in this case, the first lag of the unemployment rate. We choose one lag

for the threshold evolution (i.e., m = 1 in eq. (5)) and three lags for the VAR (i.e., p = 3).

4.2 Results

Figure 1 shows the estimated threshold, along with the unemployment rate and the CBO

estimate of the natural rate.10 The latent threshold exhibits fluctuations (i) similar to the

unemployment rate, (ii) smoother than the unemployment rate, but (iii) more volatile than

the CBO natural rate. The estimated threshold appears to lead the unemployment rate in

the early portion of the sample and lag the observed series near the end of the sample. While

the gap between the unemployment rate and the estimated threshold is different than the gap

between the unemployment rate and the CBO natural rate, these two gaps generally have the

same sign.

Figure 2 shows the regime weights– i.e., the values of the transition function for each

9A number of studies find evidence in favor of a time-varying natural rate [see, for example, Ball and Mankiw,
2002; Gordon, 1995, 1997; Summers, 1986]. The time-varying natural rate models can account for changes in
labor force participation, discouraged workers, changes in unemployment compensation, and expectations of
future policies.
10The unscented Kalman filter proposal density yielded acceptance rates that average around 20 percent

across time periods.
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period. When zt−1 > z∗t−1, π
(
zt−1; z∗t−1

)
→ 1, which we characterize as the slack regime. The

slack regime weight increases around the beginning of the NBER recessions and decreases

during the recovery periods following the trough. The slack regime weight falls slower after

the 1991, 2000, and 2007-09 recessions than other recessions, reflecting the jobless recoveries

[Schreft and Singh, 2003; Engemann and Owyang, 2010].11

We identify the shocks using a Cholesky ordering with unemployment ordered first, infla-

tion second, the short rate third, and the latent threshold last. This implies unemployment

and inflation do not contemporaneously respond to interest rates and no variable contempo-

raneously responds to the latent threshold.12 We compute both regime-dependent (RDIRFs)

and generalized impulse responses [GIRFs, see Koop, Pesaran, and Potter, 1996].

Figure 3 shows the RDIRFs for the three variables and the latent threshold, the shocked

variable in the columns and the responding variable in the rows. To compute the RDIRFs,

we set either π (zt−1) = 0 (expansion; light gray) or π (zt−1) = 1 (slack; dark gray) at the

time of the shock and hold the regime constant for the life of the response.

Shocks to the macro variables are consistent with the VAR literature, including the price

puzzle [Hanson, 2004]. Shocks occurring during expansion exhibit greater persistence than

shocks originating during slack periods. For the most part, the qualitative responses to shocks

are the same across the threshold; however, the responses are quantitatively larger in the low

unemployment regime.

The responses to shocks to the threshold are shown in the right-most column. In the

expansion regime, a shock that increases the threshold produces a large, persistent increase in

the unemployment rate and a decrease in the interest rate. Alternatively, in the slack regime,

a shock that increases the threshold tightens labor market conditions and raises interest rate.

For RDIRFs, the response of the unemployment rate does not affect the underlying state

of the economy. However, the level of the unemployment rate determines the state by con-

struction. GIRFs, on the other hand, allow the regime to respond to the model variables. We

11 In these cases, the smooth transition has an advantage over Markov-switching or TAR models. Since those
models characterize the business cycle as discrete phases, modeling jobless recoveries requires a third regime.
12Becauase the unemployment rate and CPI enter the VAR in differences, the impulse responses are converted

into levels. See the Appendix for details on how to parameterize the model for these impulse responses.
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construct the GIRFs under two scenarios: (1) π
(
zt−1; z∗t−1

)
< 0.2; and (2) π

(
zt−1; z∗t−1

)
> 0.8,

corresponding to periods of labor market tightness versus labor market slack, respectively. In

each scenario, a shock (to any variable) could push the unemployment rate across the thresh-

old. Because of the nonlinearity, the responses will also vary depending on the size and

direction of the shock, as well as the future shocks to all variables. We consider positive

shocks when unemployment starts below the threshold and negative shocks when unemploy-

ment starts above the threshold.

Figure 4 plots the GIRFs to the four shocks (in the columns) for the four variables (in the

rows). We invert the responses to shocks in the slack scenario (2) to facilitate comparison.

The direction of the responses are consistent across scenarios– at least the first three to four

months– suggesting that the regimes affect the magnitude of the responses but not their

direction. The right-most column shows the effect of a change in the threshold, which is

larger in the expansion scenario than in the slack scenario.

Figure 5 plots the responses for the same scenarios, but holding the threshold constant at

the mean value of the observed unemployment rates within the sample, 6.1 percent. Imposing

a constant threshold produces responses to an unemployment shock that are more similar

across regimes. Perhaps more importantly, the impulse responses across the regimes have

completely different characteristics than those in the time-varying threshold model. This

suggests that, in some cases, incorporating the time variation may be required to maximize

differences in the regime dynamics.

5 Application 2: Government Spending Shocks

Beginning with Auerbach and Gorodnichenko (2012), a number of papers have argued for

[Fazarri, Morley, and Panovska, 2015; Caggiano et al., 2015; and others] and against [Owyang,

Ramey, and Zubairy, 2013; Ramey and Zubairy, 2018] state-dependence in the effect of gov-

ernment spending shocks. Many of these papers test whether the macroeconomic response to

fiscal policy varies when there is slack in the economy and crowding out is less likely. In many

of the papers, however, the threshold level of economic activty– however it is measured– is

12



assumed to be constant.

Time-varying slack might be relevant in a study such as Ramey and Zubairy (2018),

who estimate multipliers over a very long sample fixing the unemployment threshold at 6.5

percent.13 We construct GIRFs from our model with a time-varying threshold and use these

to compute state-dependent multipliers.

5.1 Data

The baseline system contains four variables: (i) output relative to potential; (ii) government

spending relative to potential output; (iii) the unemployment rate; and (iv) a news shock.

The model differs from the RZ TAR model in that we include the unemployment rate to make

the model self-exciting, ordered ahead of output. As in RZ, we compute potential output as a

sixth order polynomial time trend, excluding the same period around WWII that RZ exclude.

For this application, the data are quarterly, beginining in 1946:I and ending in 2015:IV. As

before, we use the first lag of the unemployment rate to drive the regime process.

We include the contemporaneous value of the news shock, Xt, as an exogenous regressor

in the VAR, allowing the coeffi cient to be state-dependent (similarly to θip and Γi). Thus,

to construct the multipliers, we consider the contemporaneous effect of these exogenous news

shocks, ρi, and construct impulse responses accordingly based on the GIRF technique. In this

particular application, the analogue to equation 1 is the following:

yit = αi +
P∑
p=1

θipyt−p + Γi (zt−1 − z∗) + ρiXt + εit. (6)

The remainder of the model follows the structure described in Section 2. We choose one lag

for the threshold evolution (i.e., m = 1) and include four lags for the VAR (i.e., p = 4).

13 In their paper, RZ estimate the multiplier using a state-dependent version of local projections (LP). The
LP framework is a parametric, direct-multistep method of computing impulse responses. In a later section,
they show that the same results are obtained when using a version of a threshold autoregression (TAR) that
is nested by our STAR model.
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5.2 Results

Figure 6 shows the estimated threshold, along with the unemployment rate and a constant 6.5-

percent value for the natural rate (as employed by Ramey and Zubairy (2018)).14 Interestingly,

our estimate of the latent threshold lies below 6.5 percent for the entirety of the sample.15 The

threshold exhibits fluctuations similar to the unemployment rate but is considerably smoother.

There are a few periods where both the magnitude and the sign of the difference between the

unemployment rate and the estimated threshold differ from what would be inferred with a

constant threshold [i.e., recessions around 1954, 1970, and 2001]. However the remaining

recessionary periods are identified similarly, at least in terms of the sign of the gap.

Figure 7 shows the estimated regime weights, the values of the transition function for each

period. Here, the shaded areas represent the periods of slack computed using the RZ constant

threshold. For the time-varying threshold, the weight on the slack regime increases around

the beginning of the NBER recessions and decreases during the recovery period. We again

capture the jobless recoveries following the 1991, 2000, and 2007-09 recessions. Additionally,

we see a similar dynamic throughout the 1970’s and 1980’s where labor market slack seems to

have persisted throughout much of both decades. The constant threshold approach has fewer

slack periods, most of which occur during the recovery phases after the NBER troughs.

As before, we compute GIRFs to the exogenous news shock, Xt, and compute the gov-

ernment spending multipliers. GIRFs are converted into levels and are computed under

the same scenarios: (1) an expansion scenario, π
(
zt−1; z∗t−1

)
< 0.2; and (2) slack scenario,

π
(
zt−1; z∗t−1

)
> 0.8.

With this setup, we can investigate whether (i) the government spending multiplier is

larger during periods of slack and (ii) the total increase in output is larger than the increase

in government spending. The former asks whether the multiplier is larger in scenario 2 than

in scenario 1. The latter asks whether the multiplier in either case is greater than 1. To

produce the state-dependent multipliers, let ∆Gj (h) be the response of government spending

14For this application, the use of the unscented Kalman filter as a proposal density yielded acceptance rates
that average around 10 percent across time periods.
15Our sample is shorter than the full sample used by RZ. Importantly, our sample does not include the Great

Depression.
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to a shock to variable j at horizon h and let ∆Yj (h) be the response of output to a shock

to variable j at horizon h. We consider the 2-year and 4-year cumulative multipliers with

respect to a shock to Xt as:

[
H∑
h=0

∆GX (h)

∆X

]−1 H∑
h=0

∆YX (h)

∆X
,

for h = {8, 16} quarters.

Table 2 reports the posterior mean estimates of the multipliers for the two scenarios for

both horizons h = {8, 16} quarters. The multipliers during periods of labor-market tightness

in the expansion scenario are less than 1 and similar in magnitude at both horizons. However,

we find evidence of a much larger multiplier during periods of slack, reaching a level close to

3 after two years and falling to just below 2 after four years.

These results are consistent with those in, for example, Auerbach and Gorodnichenko

(2012) and contrast those with RZ. There are a number of reasons for this finding. First,

estimating the threshold allows us to maximize the difference in the responsiveness of output to

government spending across regimes. Second, allowing the threshold to vary over time further

facilitates maximizing this difference. Third, our scenarios originate the shock in periods in

which the regime is entrenched (or well defined). Assuming that there are differences across

the regimes, our scenario definitions may amplify the differences. An increase in government

spending increases output and decreases the unemployment rate. If this effect is larger in the

slack regime, the longer the economy stays in the slack regime, the larger the multiplier will

be. Thus, starting the economy in a deeper recession should amplify the effect.

6 Conclusions

The standard smooth transition autoregression is a popular alternative to Markov-switching

models. One drawback of the standard STAR model is that it must be estimated with a

constant threshold (or constant thresholds in the case of multiple-regime models). We extend

the STAR model to include a time-varying threshold. The added complexity of the time-

15



varying threshold requires a nonlinear alternative to the Kalman filter to generate proposals

for an MH step. We present two applications of the model: (i) interpreting the threshold as

the natural rate of unemployment in the Phillips-curve and (ii) exploiting the model-implied

states of the economy to produce government spending multipliers which can vary throughout

the business cycle.

In the first application, the regimes in the STAR model depend in part on the sign of the

employment gap since the threshold can be interpreted as the natural rate of unemployment.

Moreover, allowing the threshold to vary lets us analyze the effect of shocks to the natural

rate. We find that the effect of these shocks differs across regimes.

In the second application, we find that fiscal policy shocks seem to produce different

effects depending on the prevailing economic conditions at the time of the shock. Government

spending multipliers during expansions are less than 1 but are much larger, reaching values

of at least 2, during economic downturns.
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A Bayesian Estimation Methdology

A.1 Drawing Ψ,λ conditional on γ,Σ, and {z∗t }Tt=1

Conditional on π (zt−1), drawing from the posterior distributions for the parameters of (2) is
a straightforward application of Chib (1993) and Chib and Greenberg (1996). We can rewrite
(2) in the following form:

y0t = α0 +

p0∑
i=1

θ0iyt−i + Γ0 (zt−1 − z∗) + ε0t

and

y1t = α1 +

p1∑
i=1

θ1iyt−i + Γ1 (zt−1 − z∗) + ε1t,

yt = α0 +

p0∑
i=1

θ0iyt−i + Γ0 (zt−1 − z∗) + π (zt−1)

[
dα1 +

p1∑
i=1

dθ1iyt−i + dΓ
1 (zt−1 − z∗)

]
+ εt,

where εt ∼ N (0,Ω), dα1 = α1−α0, dθ1i = θ1i−θ0i, and dΓ
1 = Γ1−Γ0. We use this specification

to measure the change in coeffi cients across regimes. This allows for the sampler to be effective
even if γ is small while imposing the identifying restriction that γ > 0. Then, we can stack
yt with the latent threshold, z∗t . Thus, we define

ỹt = Σ−1/2

[
yt
z∗t

]
and

x̃t = Σ−1/2

[
xt 01×2

0(4+2p)×1

[
1 z∗t−1

] ] .
Given the prior N (m0,M0), we define X and Y as the time-stacked vectors of x̃t and ỹt,
respectively. Then, the joint parameter vector can be drawn from[

Ψ′

λ

]
∼ N (m,M) ,

where

M =
(
M−1

0 + X′X
)−1

and

m = M
(
M−1

0 m0 + X′Y
)
.
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A.2 Drawing γ conditional on Ψ,λ,Σ, and {z∗t }Tt=1

Given a gamma prior, the posterior for γ is not a standard form; γ, however, can be drawn
from an MH step. Then, a candidate, γ̂, can be drawn from a gamma proposal density:

γ̂ ∼ Γ (g0, G0) ,

and accepted with probability ag = min {Ag, 1}, where

Ag =

∏
t φ (yt|π (zt−1|γ̂,z∗t ) ,Ψ,Σ)∏

t φ
(
yt|π

(
zt−1|γ[i],z∗t

)
,Ψ,Σ

) × dΓ (γ̂|g0, G0)

dΓ
(
γ[i]|g0, G0

) ,
γ[i] represents the last accepted value of γ, φ (.) is the normal pdf, and dΓ is the gamma pdf.

A.3 Drawing elements of Σ conditional on Ψ,λ, γ, and {z∗t }Tt=1

To draw the components of the variance-covariance matrix Σ, we need to impose the restriction
that the diagonal element corresponding to the variance of innovations to the threshold is
small. We employ the method developed in Chan and Jeliazkov (2009) for a restricted Inverse-
Wishart specification. Due to the positive-definite nature of the variance-covariance matrix,
there exist unique matrices L and D such that LΣL′ = D and Σ−1 = L′D−1L. L is a lower-
triangular matrix with 1′s on the diagonal and akj , 1 ≤ j < k ≤ n + 1, as the free elements.
D is a diagonal matrix with λk > 0 along the diagonal:

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn+1

 , L =


1 0 0 · · · 0
a21 1 0 · · · 0

a31 a32 1 · · ·
...

...
...

. . .
a(n+1)1 a(n+1)2 · · · 1

 .

We follow Chan and Jeliazkov (2009) and consider the following priors for λk and a where
ak = [ak1, ..., ak,k−1]′ and a =

[
a′2, ..., a

′
n+1

]′:
λk ∼ IG (vk0/2, δk0/2) ,

a | λ ∼ N (a0,A0) .

We implement the estimation procedure outlined in Chan and Jeliazkov (2009) and impose
that λn+1 = 0.01.16

B Adapting the State-Space to Construct Impulse Responses
in Levels

In the first application for the natural rate of unemployment, we need to address how the
observed unemployment rate enters into the model in both differences (as an element of

16See Chan and Jeliazkov (2009) for a full discussion of the econometric technique.
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the VAR) and in levels (via the error-correction term). Therefore, when computing impulse
responses, both of these dynamics must be captured as the shock propagates through the
system. We adjust the coeffi cient matrices in the state-space representation of yt in order
to express how the levels of all variables in the VAR evolve following a shock. Recall that
the VAR consists of monthly changes in the unemploment rate and CPI and the level of
the 3-month T-Bill rate. The error-correction term and the threshold variable, zt−1, use
the level of the unemployment rate. We can write the the state-dependent processes as the
following, suppressing the i notation to designate the state for clarity but acknowledge that
these dynamics would apply in either i = {0, 1}:

 y1t − yt,t−1

y2t − y2,t−1

y3t

 =

 θ11,1 θ12,1 θ13,1

θ21,1 θ22,1 θ23,1

θ31,1 θ32,1 θ33,1

 y1,t−1 − yt,t−2

y2,t−1 − y2,t−2

y3,t−1

+

 θ11,2 θ12,2 θ13,2

θ21,2 θ22,2 θ23,2

θ31,2 θ32,2 θ33,2

 y1,t−2 − yt,t−3

y2,t−2 − y2,t−3

y3,t−2


+...+

 Γ1

Γ2

Γ3

 [y1,t−1 − y∗t−1

]
+

 ε1t

ε2t

ε3t


where y1 is the unemployment rate, y2 is the CPI, y3 is the interest rate, and y∗t−1 is the

estimate of the time-varying latent threshold. Rewriting this in levels produces the following:

 y1t

y2t

y3t

 =

[
y1,t−1

y2,t−1

]
+ θ1

 y1,t−1

y2,t−1

y3,t−1

− θ1

 y1,t−2

y2,t−2

0

+ θ2

 y1,t−2

y2,t−2

y3,t−2

− θ2

 y1,t−3

y2,t−3

0


+...+

 Γ1

Γ2

Γ3

 [y1,t−1 − y∗t−1

]
+

 ε1t

ε2t

ε3t


=

[
Ĩ + θ1

] y1,t−1

y2,t−1

y3,t−1

+

 θ11,2 − θ11,1 θ12,2 − θ12,1 θ13,2

θ21,2 − θ21,1 θ22,2 − θ22,1 θ23,2

θ31,2 − θ31,1 θ32,2 − θ31,1 θ33,2


φ2−φ̃1

 y1,t−2

y2,t−2

y3,t−2



+...+

 Γ1

Γ2

Γ3

 [y1,t−1 − y∗t−1

]
+

 ε1t

ε2t

ε3t

 ,
where Ĩ = diag([1, 1, 0]).

Ultimately, the state space for the level responses takes the form:
yt
yt−1

.
yt−p

 =


Ĩ + Γ + θ1 θ2 − θ̃1 . −θ̃p

I 0 0
0 I 0
0 0 0




yt−1

yt−2

.
yt−p−1

+

 ε1t

ε2t

ε3t

 .
In the second application, all variables enter the VAR in differences so the adjustments

shown above to the last element in the VAR are not necessary.
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Table 1: Priors for Estimation

Parameter Prior Distribution Hyperparameters
{z∗t }

T
t=1 MH draw via UKF proposal n/a

α, θ,Γ, λ N (m0,M0) m0 = 0κ×1 ; M0 = I∗κ
γ Γ (g0, G0) g0 = 46 ; G0 = 0.1
ρ N (f0, F0) f0 = 1 ; F0 = 1

Σ =

[
Ω ρ
ρ 0.01

]
λk ∼ IG (vk0/2, δk0/2) vk0 = 1 ; δk0 = 1

= L−1D
(
L−1

)′
D = diag([λ1, ..., λN+1]

L =

[
IN 0
a 1

]
a | λ ∼ N (a0,A0) a0 = 0N×1 ; A0 = IN

Table 1: Parameterization of the Priors for Bayesian Estimation. For the normal prior on the
VAR, error correction, and threshold coeffi cients: κ = n (4 + p0 + p1) +m+ 1. *The diagonal
elements of the variance term, M0, corresponding to the change in the VAR coeffi cients for
regime 1 are set equal to 0.1 to contrain the amount of variation.

Table 2: State-Dependent Multipliers

Multiplier
2-year
π
(
zt−1; z∗t−1

)
< 0.2 0.22

π
(
zt−1; z∗t−1

)
> 0.8 2.97

4-year
π
(
zt−1; z∗t−1

)
< 0.2 0.28

π
(
zt−1; z∗t−1

)
> 0.8 1.90

Table 2: State-dependent government spending multipliers computed relative to an exogenous
news shock. We condition the generalized impulse responses on the weight placed upon the
slack regime being low (tight labor markets) versus high (slack labor markets). The table dis-
plays the 2-year and 4-year cumulative multipliers based upon the behavior of output relative
to government spending in response to the news shock. Details regarding the calculation of
the multiplier are provided in Section 5.2.
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Figure 1: Latent threshold estimated in Application 1: Observed data on the unemployment
rate, the CBO estimate of the natural rate, and the posterior mean estimate of the latent
threshold.

Figure 2: Posterior Mean Estimates of the Regime Probabilities for Time-Varying Threshold
Model in Application 1. The time series plots the model-implied estimates for the values of
the transition function in each period.
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Figure 6: Latent threshold produced in Application 2: Observed data on the unemployment
rate, the posterior mean estimate of the latent threshold, and a constant 6.5-percent level.

Figure 7: Posterior Mean Estimates of the Regime Probabilities for Time-Varying Threshold
Model in Application 2. The time series plots the model-implied estimates for the values
of the transition function in each period. The shaded areas represent the periods of slack
computed using the RZ constant threshold of 6.5 percent.
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